ENGINEERING CHANGE ORDER

Number 03-

PELLD

Project Engineer

Stephen L. Robinson

Change Requested By

Stephen L. Robinson

Cross Ref. Doc. Type & Number

None

Page 1 of

1

Description of Change

Release of technical documentation for archive:

VideoWise Protocol , June 1997

Reason for Change None

‘€

] Changes Form, Fit, or Function
[] Other performance enhancement

4 Internal

Manufacturing V

None

DN
[INew Product BJNone
[IScrap
[Error
[Design Improvement [Rework
XAdditional Info g&zsélxp ess
[CJCost Reduction CJStock TOgt
Conform to Present Practi
LiConform to oes [JRunning Change
Engincering Signature Date
Materials Signature Date

Manager’s Initials in Appropriate Box

Normal

Production

None

Materials

None

Stock Room
None

Sales / Marketing
None

Repair
None

Quality Assurance
None

Other
None

FRM-8

Revision H

6/15/99

Stephen L. Robinson

From: Phillip Mcinnes <videowiz@icon.co.za>
To: STEPHEN; L.; ROBINSON

Subject: Videowise Communications Protocols

Date: Wednesday, June 25, 1997 11:18 AM

Hi Stephen

My name is Sean Kinghan, | will be handling this for Phillip and you can

contact me at videowiz@icon.co.za

The documents dealing with the protocols co
sections - If you only have the one then you a
something. | will email the complete set direct
get back to the office.

As regards the use of equipment for testing, w
which runs under win3.1 or win95 and drives a
through one of the PC comm ports. If your don
need the appropriate convertor.

When do you expect to be ready for testing?
If | think of anything else I'll email you.
Regards

Sean

prise 4 or 5 separate
e definitely missing
y to you tomorrow when |

e will supply an exe file
PTZ using our protocol
ne uses RS485/RS422 you will

Page 1

Stephen L. Robinson

From: wkiampfl@ix.netcom.com

To: tcovacev@pelco.com; dmartin@pelco.com; djmartin@prodigy.com

Cc: slrob@lightspeed.net; intl@pelco.com; ghurenka@pelco.com; dsmith@pelco.com; cynthia@cybergate.com;
ctuttle@pelco.com; 75102@ix.netcom.com; 2717@compuserve.com

Subject: Fwd: RE: PhilTech and the Videowise Communications Protocols

Date: Friday, July 11, 1997 8:15 AM

Hello All,

The following is a response from Mike Cox at Specialised Control Technologies (South Africa) regarding
the requirement for Spectra to communicate with others' matrices. This is self explanatory.

these out to substitute with our CM9760. This is primarily due to the substantial cost for replacement
and second, due to features not yet supported by CM9760 (i.e. interface to coin counters, active GUI,
compatibility with others' receivers and domes, etc.). Therefore it's critical that all new domes going in
should be compatible to existing controller. Our competition is already doing this and, in doing so,
specifically point out that Pelco DOES NOT comply. Need more be said?

Steve Robinson has been actively trying to get additional information on the Philtech protocol, and per
the accompanying e-mail is awaiting an updated response from VideoWise. Any help in getting the
needed software protocol to Steve would be greatly appreciated.

It should be noted that Sensormatic have already set up shop in South Africa, having already been
successful in nailing down some heavy retail projects (i.e. Edgars supermarket chain) and are actively
pursuing the casino market. In addition, they will be using their reference to the 1996 Olympics to gain
ground on supplying for the upcoming 2004 Olympics in Cape Town.

Baxall is owned by Norbain, who several months ago acquired Reditron, the largest single security
distributor on the African continent. Reditron has for a number of years been the sole Burle agent and
has supplied the lion's share of systems to the commercial and industrial sector in South Africa, and

have been supplying AutoDomes in increasing numbers to Sun International. Given Norbain's
involvement, you can expect pricing and promotion to become even more aggressive from that camp. As
an example, Norbain purchases approximately 40,000 cameras from Sony at a shot, and is thereby able
to offer them to the market at a cost below the South African Sony agent's (Tedelex) purchase cost.

| trust you are all familiar with Betetech. This company, managed by Alan Armstrong, is the
manufacturer of GYYR's new ControLink.

Diamond and Maxpro are fairly new to the market in South Africa, but you can expect them to take
advantage of Pelco's relative weakness there. Again, price and cross compatibility will be the key
considerations for purchase.

Pelco has an excellent opportunity to make a name for itself in South Africa, but it will require a
dedicated investment in time to get products compatible, as well as a monetary investment to make the
products price competitive. Bear in mind that Sensormatic, Norbain/Baxall and Burle all have offices
established in South Africa and transfer their goods at manufacturer cost, thereby avoiding heavy import
duties. Additionally, Norbain's bulk buying power lends itself to even further price reductions. To be a
player in the market there (as in England) you need a corporate presense that can take advantage of
lower transfer pricing. Normal distribution price markups will keep you out.

Page 1

That's it for my soapbox for now. Let me know if there's anything | can do to help.

Best regards,
Werner

------Begin forward message

Return-Path: <cctv@icon.co.za>
Received: from oak.zilker.net (rsmitch@oak.zilker.net [198.252.182.129]) by ixmail7.ix.netcom.com
(8.7.5/SMI-4.1/Netcom)

id HAA01010; Thu, 10 Jul 1997 07:35:04 -0700 (PDT)
Received: by oak.zilker.net (8.8.5/zilker.1.126)
|d JAA08919 Thu 10 Jul 1997 09 34 52 -0500 (CDT)

|d JAA08915 Thu 10 Jul 1997 09 34 48 -0500 (CDT)
Received: from .icon.co.za (m2-4-ndf.dial-up.net [196.34.156.68]) by mail1.dial-up.net
(8.8.5/8.7.5/ICONfront#1) with SMTP id QAA12824 for <wklampfl@crockettint.com>; Thu, 10 Jul 1997
16:36:20 +0200 (GMT)
Date: Thu, 10 Jul 97 16:15:10 PDT
From: Mike Cox <cctv@icon.co.za>
Subject: RE: PhilTech and the Videowise Communications Protocols
To: Werner Klampfl <wklampfl@crockettint.com>
X-PRIORITY: 3 (Normal)
X-Mailer: Chameleon 4.6, TCP/IP for Windows, NetManage Inc.
Message-ID: <Chameleon.970710163130.cctv@.icon.co.za>
MIME-Version: 1.0
Content-Type: TEXT/PLAIN; CHARSET=us-ascii

To answer some of your questions.

Philtech / Videowise is a South African company who started up in the 1980's
ostensibly to service the casino market.

The members are Philip Mclnnes, Sean Kingham and Raymond Parfit.

They made for themselves a niche market supplying matrices after Teljoy
dropped out of the casino market.

They make 24 by 8, 48 by 16, 56 by 16 and a 156 by 32 matrix.

All matrices have time, date , camera titles, tours, sequencing, password
access, P.C interface, multiples of 16 alarm inputs, either n/o, n/c or a
change of status.

They also make coin/note counters for Glory and other similar machines for
casinos.

They provide displays for Jackpots and interface the coin/note/ jackpot info
into the matrix to super-impose data onto the cctv screen.

Many other items are manufactured such as video amps, P.C controlled audio
products.

That's a small selection of the equipment they have developed and sell to
the trade.

| estimate 40% of existing S.I casino;s use Philtech matrices now. Betatech
have sold 2 or 3 matrices, the remainder are old Teljoy matrices.

Page 2

There will be 41 casino licenses issued in the very near future with 3 of

the 41 already issued, Philtech matrices are waiting to be installed in

these 3.

We can offer Spectra domes or Intercept if we can interface to the Philtech
matrix, Teljoy's matrices would be a waste of time.

As to how many domes we could sell, well already Diamond has sold domes to
S.1 through Diamond supplying protocol info to Philtech who have developed a
interface unit for $200.00 retail.

Should dealers win tenders for C.B.d systems and will not purchase Pelco
matrices then we would still have some of the business through the dome
sales.

How many could we sell ?
Very difficult to say.
With Norbain, Diamond, Sensormatic, Maxpro and others already selling domes

= S year.
I understand all the other dome suppliers have given or Philtech have
‘worked out' the protocol to drive the respective domes.

please keep me informed as to your decisions. S.| has asked on numerous
occasions what's happening, and | have had to cloud the issue.

Mike

Name: CCTV

E-mail: CCTV <cctv@icon.co.za>
Date: 10/07/1997

Time: 16:15:10

This message was sent by Chameleon

------End forward message

Page 3

=
N

J

Philtech (27-11) 622-4174 PAGE1OF 1

PELCO From: Stephen L. Robinson
300 WEST PONTIAC WAY . Senior Software Engineering Manager
CLOVIS, CALIFORNIA, USA 93612 PELLD. Voice (209) 292-1981 x 2344
o Fax (209) 294-2697
June 25, 1997 slrob@lightspeed.net
Mr. Philip Mclnnes:
I have been talking with Werner Klampfl i i iththe

“VideoWise Communications Protocols”. Werner has provided me with a copy of the “Abridged protocol
reference, Release 1.10 (97.03.18)”.

He also tried to send me another document in a file he called “Philtech2” but that didn’t come through the
net correctly. The reference I have describes the message framing, check sum, etc. but does not describe
any of the commands and data. Is that information is contained in the other document?

When I asked Werner for the other document he suggested (for a variety of reasons) that I make contact
with you. Iam trying to get this project going and would like the following information:

Do you have an Internet address?

Can I get a copy of the manual that details the command set?

Can we make arrangements for the use of some of your equipment for testing?
Do you have any suggestions or specific targets that we should be looking at?

I’m looking forward to hearing from you and working on this project.

Sincerely,

Gpha L ek

Stephen L. Robinson

From: wklampfl@ix.netcom.com

To: wklampfl@ix.netcom.com; sirob@lightspeed.net

Cc: ctuttle@pelco.com; cctv@icon.co.za
Subject: Re: PhilTech Protocol
Date: Tuesday, June 24, 1997 9:09 AM

Hello Steve,

Regarding the Philtech protocol, PHILTECH2,

the protocol. | don't have an e-mail address for him, but the address, phone and fax numbers are as follows:

Philtech

141 8th Avenue

P.O. Box 59904, Kengray 2100

Bezvalley, Johannesburg 2094, South Africa
Tel.: (27-11) 622-4188

Fax: (27-11) 622-4174

Please let me know if this works out for you.

Thanks,
Werner

On 06/23/97 10:19:48 you wrote:
>

>Werner:
>

| think the best bet would be for you to contact Philip Mcinnes of Philtech directly for

>|'ve checked my records and I've found that you gave me two files from
>PhilTech. The first file, titled "PHILTECH1", contains "VideoWise
>Communications Protocols, Abridged protocol reference, Release 1.10
>(97.03.18)". The second file, titleled "PHILTECH2", is corrupted or

>something. | can't read it.
>

>| recently sent you some notes on how our pr
>presets, and zones. Did you receive it and w

otocols handle patterns,
as it what you needed?

Page 1

\\ﬁi//

Qeo- 201. 7575

N

- Stephen L. Robinson

From: Werner Klampfl <wklampfl@crockettint.com>

To: 'Tuttle, Cynthia' <CTuttle@firewall1.pelco.com>

Cc: 'Steve Robinson' <slrob@lightspeed.net>; 'Mike Cox' <cctv@icon.co.za>
Subject: RE: PhilTech and the Videowise Communications Protocols

Date: Sunday, July 06, 1997 4:08 PM

Hello Cynthia,
Many thanks for your e-mail and ohone call. With regards to VideoWise, | am not familiar with this firm.

However, being based in South Africa | can only assume they are wanting to make inroads to the vast casino
market there. Accordingly | am copying this message to Mike Cox at Specialised Controls for his comments.

AL L.

requirement of the casinbs is that additional domes MUST be compatible with existing control/switching syétems
- hence the request.

I suppose the most important question should be "How many domes can we sell to Sun International and the rest
of the South African market in the next 6-12 months if we can make Spectra (and Intercept) compatible with
Philtech, with VideoWise, and with Baxall". | hope Mike can shed some light on this for us via his contacts there.

Best regards,
Werner

From: Tuttle, Cynthia [SMTP:CTuttle@firewall1.pelco.com]

Sent: Monday, June 30, 1997 10:29 AM

To: ‘wklampfl@ix.netcom.com'

Cc: Martin, David; 'slrob@lightspeed.net'

Subject: FW: PhilTech and the Videowise Communications Protocols

Hi Werner,

Per my phone mail, please help Stephen answer the questions he has
below.

For your information, Stephen estimates that this project alone could
require months worth of work. We need to do our due diligence with
respect to the market potential for our dome with this protocol, and
prioritize the development of this translator against Baxall for the UK.

Can you please call/respond via e-mail to help answer these questions?

Thanks
Cynthia

> From: Stephen L. Robinson[SMTP:slrob@lightspeed.net]
Page 1

> Sent: Friday, June 27, 1997 11:21 AM
>To: Cynthia Tuttle

> Subject: PhilTech and the Videowise Communications Protocols
>
> Greetings:
>
> | have just received a message from Sean Kinghan who will "be handling
> this
> for Phillip". | believe that Sean works for VideoWise since his
> address is
> "videowiz@icon.co.za".
>
> What | need is some sort of specifications and someone who can tell me
> if
> they think VideoWise is OK. For all | know, they're working with or
> for
> Sensormatic
>
> | would like to know what products / systems PhilTech wants to work
> with,
> what the projected sales are, etc. Should we be working on this? No
> one's
> answered this question yet.
>
> Thanks, SLR
>

Page 2

VideoWise Communications Protocols

Abridged protocol reference
Releasel.10 (97.03.18)

Hardware and Signal Standards
The communications standards to which all Philtech devices conform are as follows :

Inter-device connection is virtually always either RS-485 or RS-422. In those instances where a
device has only a single-channel link, the documentation will specify whether the link is
implemented as half-duplex (bi-directional shared) or simplex (uni-directional) only.

The baud rate is variable, but typically 9600 BPS. Some systems will attempt to determine the
maximum baud rate common to all devices tied together. This is done by having the master
attempt communications at increasing rates with individual devices, and then using the highest
rate before ACK failure as the system standard. The highest value attempted is commonly 57600
BPS. Note that some devices may be able to run at higher rates than others, due to shorter cable
lengths etc. but must still conform to the system rate. It is possible to run various devices at
differing baud rates, but this practice leads to problems with spurious characters, and
unidentifiable packets at those devices which are just listening in.

Serial communication standards

On those devices which may possibly need to perform unplanned interfacing, the serial protocols used by
all Philtech devices follow the following format :

Byte transfer is asynchronous, each byte consists of 10 bits - 1 start bit, 8 data bits and 1 stop bit.
Although many microcontrollers support a 9-bit addressing scheme, a PC cannot, which basically
forces the use of an 8-bit format in those applications where inter-system computability must be
maintained.

The serial communications format therefore has a twist - this is the use of a flag byte to indicate
a following address byte. The flag used is OXFE - always. This value is reserved as an address -
no device may ever have an address of OxFE. The serial handler accepts requests to send data
bytes, but also accepts requests to send addresses. A request to send an address results in a flag
byte (OxFE) being shoved out before the address. The receiving device therefore knows that a
given byte is an address, and can ignore all data following an address byte which is not its own.
Of course, this means that any real data of value OxFE is in trouble - the RXR thinks the next
byte is an address. So the portion of the serial handler of the TXR that handles data transmission
(as opposed to address transmission) sticks a second tag byte on in front of the real data byte,
and the receiver knows when it gets two consecutive tag bytes that these in fact represent a single
data byte. This is why no address may be equal to OXFE - the receiver would interpret the tag +
address pair of OxFE+OxFE as a single data byte. (This technique is common in the C
programming language where ‘\’ represents the escape character in a string, but \’ is a true \’.)

On those applications which make use of closed system components (i.e. excluding a PC), and therefore
will never need to interface to anything but well-known (proprietary) devices, the processors typically
communicate in 9-bit mode. The master device uses the high order bit as an address flag mechanism in a
similar manner to the flag byte scheme discussed above. (This method is supported in hardware by the
8051 processor, and takes a load off the software). See an 8051 reference for details.

On those applications in which multiple processors exist on a single board, the master processor may
communicate with the slaves in either asynchronous or synchronous mode (in either 8 or 9-bit mode). The
transaction is then usually at very much higher baud rates than are normally available by wire (up to 1
MHz maximum with an asynchronous schema).

Supported packet formats
The packet formats used by all Philtech devices have the following structure :

A packet consists of a header, followed by a data stream, and a tailing check-byte.
The header is a block of 5 bytes in the following order :

Destination address

This is the 8-bit address of the device intended to receive the packet. Each
device must be uniquely identifiable by means of its address and device type.
This means that while two devices of differing types may share the same
address, two devices of the same fype may not do so (unless this is deliberately
done, of course). There are some limitations on the allowable addresses due to
the use of certain addresses as flags or global addresses - these limitations are
discussed in detail later in the document. In brief, all addresses up to but not

including 0xFO may be used without fear of conflict. All addresses above 0xFO
are either used, or reserved for future use by extended system commands.

Source address

This is the address of the transmitting device - it is typically used by the
receiving device as confirmation of a valid source, and as a means of
identifying the address to which a response should be sent. Many receivers will
accept commands or data only from specified device addresses or a range of
addresses - this is often a system requirement in secure applications.

Device types

The destination/source types are packed into the hi/lo-nibbles of this byte. The
destination device type occupies the upper 4 bits of the byte, and is used by the
receiving device to check whether it is being addressed - or some other device
of the same address. The source device type occupies the lower 4 bits, and is
used in the same way as the source address - both for identifying a return type,
and to ensure that only valid devices may communicate with the receiver.

Primary command

This is the required primary command byte. All commands make use of this
byte - a complete list of possible commands follows later. The primary
command specifies the nature of the command packet, and allows the RX
device to correctly interpret the following data (if any).

A special case is when this byte has the value 0x00. This will invoke system
commands for the RXN device, for all device types. Other values of the
primary command will have different meanings for different devices, but all
devices respond to 0x00 as a system command invocation.

Secondary command

This is the optional secondary command byte. It must be sent, even if it has a
null value, but is called optional because it need not necessarily contain valid
data if the nature of the primary command is such that only one byte is
required.

The packet data stream is of variable length. This does require rather more sophisticated code
with respect to packet processing on the part of both TXN and RXN devices than is required with
fixed-length packet handlers, but the benefits to a high-level process are huge.

Note that all packets have the same header and checksum requirements, no matter what
their data length.

The data stream of a variable length packet has a preliminary byte which specifies the
number of data bytes following. The receiver makes use of this byte to locate the last
expected byte of this packet (the checksum), and tests the packet for correctness. The
TXR constructs a packet with header, data length, data stream and checksum, and
transmits the packet. The RXR then tests the packet on the basis of expected length.
This implies that a faulty packet length will place the check byte at an incorrect location,
leading to a bad CRC. The packet will fail, and communications cannot take place.

The design trade-off against a fixed-length packet is of an extra byte permanently embedded in

the packet (the length byte), versus the ability to switch packet sizes instantaneously. This is often
required in systems which regularly send messages of varying nature.

The checksum byte generated uses a cyclic redundancy check, which is more efficient at error
detection than an XOR checksum. The generating polynomial byte used is 0xCC. Unfortunately,
there is rather a lot of theory, and some strange code attached to this process, so a complete
explanation is impossible. Most introductory texts to communications theory have a decent
description. Both C and 8051 assembly language code for a CRC generating module is included
in Appendix F, as well as a further discussion of CRCs and their properties..

\ The checksum byte is a CRC of all preceding bytes in the packet (excluding itself). One

of the peculiarities of this thing is that a CRC of the complete packet (including the
packet CRC) should be equal to zero. So whether you generate a CRC for all data before
the CRC and then test for equality, or generate for all data including the CRC and then
test for zero is a matter of personal preference.

It is important to note that the stuffing of OXFE bytes (address & data flags) takes place
after the CRC has been calculated, by the low-level serial drivers. Similarly, the process
of picking out the extra flag bytes must take place before the CRC is calculated by the
RXR. (This implies that a CRC of OxFE will also equal two consecutive OXFE bytes.)

Appendix C : Communications handling

The following code is a set of sample drivers for the communications handler, including serial and packet
handlers.

SERIAL.C

#include <stdmac.h>
#include <reg51.h>
#include <board.h>
#include <command.h>
#include <serial.h>
#include <xtaldef.h>

#ifndef EOF
#define EOF -1
#endif

I* test for unit's own address */

I* code must use registerbank SER_BANK */
extern bool serAddressed(byte test);

extern void serCloseTX(void);
extern void serOpenTX{void);
extern void serDisableTX(void);
extern void serEnableTX(void);
extern void serlnhibitTX(byte delay);
extern void serlnhibitTXNext(void);
extern void serRelaxTX(void);

extern bool serClosedTX(void);
extern bool serRetardedTX(void);

I* transmission inhibit service routines */
extern byte cfgTXInhibit(void);
extern void serinhibSrv(byte ticks);

static mdata bool TX_Busy = FALSE;
static mdata bool RX_Quiet = TRUE;
public bool serSendActive(void) { return TX_Busy; }

public bool serAvailData(void) { return linStreamEmpty(); }
public char serGetData(void)

{

while (inStreamEmpty()); /* wait */

return inStreamGetChary();

}
public char serPutData{char put)

{
if (loutStreamFull() && !serClosedTX())

outStreamPutChar(put);

if (put == MSG_HEADER) outStreamPutChar(MSG_HEADER);
if (ITX_Busy &8& !serRetardedTX()) Tl = TRUE;

return put;

}
return EOF;
}

public char serPutAddr(char addr)

{

if (loutStreamFull{) && !serClosedTX())
outStreamPutChar(MSG_HEADER);
outStreamPutChar{addr);
if (ITX_Busy && !serRetardedTX()) Tl = TRUE;
return addr;
}

return EOF;

}

public char serPutBuf(char *buf, byte len)

{
if (!serClosedTX())

xdata byte i;

for (i =0;i<len; i-H-)
if (outStreamFull()) break;
else

{
xdata byte put = buffi];

outStreamPutChar(put);
if (put == MSG_HEADER)
outStreamPutChar(MSG_HEADER);

}
if ({TX_Busy && !serRetardedTX()) Tl = TRUE;
return i;

}

return 0;

}
public char serPutStr(char *putStr)

{
if (IserClosedTX())

xdata byte i, put;
for (i = 0; (put = putStr[i]) I= 0; i++)
if (outStreamFull()) break;
else

{

outStreamPutChar(put);

if (put == MSG_HEADER)
outStreamPutChar(MSG_HEADER);

}
if (ITX_Busy && !serRetardedTX()) TI = TRUE;
return i;
}

return 0;

}

#pragma registerbank(SER_BANK)

public void serintHandler(void)

{
if (RI)

{

Rl = FALSE;
inStreamPutChar(SBUF);
RX_Quiet = FALSE;

}

if (T1)

{
Tl = FALSE;
if (loutStreamEmpty() && !serRetardedTX())

{

ETXRX_ = Hl;

SBUF = outStreamGetChar();
TX_Busy = TRUE;

}

else TX_Busy = ETXRX_ = FALSE;

}
}

#pragma registerbank(DEF_BANK)

public void serSetMode(byte mode)

{

SCON = 0x40;

TMOD = (TMOD & 0x0f) | 0x20;
}

public void serSetBaud{word baud)

{
PCON &= ~0x80;
switch(baud)

case 19200: PCON |= 0x80;

case 9600: TH1 = TL1 = SER_9600_BAUD; break;
case 4800: TH1 = TL1 = SER_4800_BAUD; break;
case 2400: TH1 = TL1 = SER_2400_BAUD; break;
default : TH1 = TL1 = SER_1200_BAUD; break;

}

public void serlnit{void)

{
inStreamFlush();
outStreamFlush();

serSetBaud(9600);
serSetMode(1);

serOpenTX();
serEnableTX();
serRelaxTX();

TF1=PS=LO;
TR1 = TRUE;

REN = ES = TRUE;
ETXRX_=LO;

}

public void serService(byte ticks)
{
if (RX_Quiet) serinhibSrv(ticks);
else

{
RX_Quiet = TRUE;
serinhibitTXNext();

}
if {loutStreamEmpty() && !TX_Busy)

if (IserRetardedTX()) Tl = TRUE;
}

TXCONTROL.C

#include <stdmac.h>

#i Lesel. LA das
neiuuc sreyo i~

#include <serial.h>

I This flags access denial to the TX buffer for caller
static mdata bool TX_Closed = FALSE;

/I This flags an ON/OFF transmit inhibit of data in TX Buffer
static mdata bool TX_Retarded = FALSE;

1l This flags a timer countdown transmit inhibit of data in TX Buffer
Il it is in effect a temporary, timed version of TX_Retarded

static mdata byte TX_Delay = 50;

static mdata byte TX_NextDelay = 30;

i This closes access by the caller to the TX buffer
public void serCloseTX(void) { TX_Closed = TRUE; }

I This opens access by the caller to the TX buffer
public void serOpenTX(void) { TX_Closed = FALSE; }

i This halts transmission of data in the TX buffer
public void serDisableTX(void) { TX_Retarded = TRUE; }

i This re-enables transmission of data in the TX buffer
public void serEnableTX(void) { TX_Retarded = FALSE; }

Il This re-enables transmission of data in the TX buffer
II'it also immediately invokes the interrupt routine for TX
public void serlnvokeTX(void)

{

TX_Retarded = FALSE;

if (loutStreamEmpty() && IserSendActive()) Tl = TRUE;
}

I This temporarily halts transmission of data in the TX buffer
public void serinhibitTX{byte delay) { TX_Delay = delay; }

/I This loads the next precalculated delay
public void serinhibitTXNext(void) { TX_Delay = TX_NextDelay; }

1 This re-enables transmission of data in the TX buffer
public void serRelaxTX(void) { TX_Delay = 0; }

Il These return the state of the inhibit functions

public bool serClosedTX(void) { return TX_Closed; }

public bool serRetardedTX({void) { return TX_Retarded || TX_Delay; }
public bool serDelayedTX(void) { return TX_Delay; }

extern byte cfgTXInhibit(void);

public void serinhibSrv(byte ticks)

{
if (TX_Delay)
if (TX_Delay > ticks) TX_Delay -= ticks;

else
{
TX_Delay = 0;
TX_NextDelay = cfgTXInhibit();
}
}
PACKET.C

#include <stdmac.h>
#include <stdlib.h>

N

#include <string:h>
#include <command.h>
#include <serial.h>
#include <crc.h>

#include "pak.h"

I* these MUST be supplied by MAIN.C */
extern bool unitlsDevice(byte dev);
extern byte unitDevice(void);

extern bool unitisAddress{byte addr);
extern byte unitAddress(void);

#define MAX_DLEN 32
#define VHDR_LEN 6
#define MAX_PLEN (MAX_DLEN+VHDR_LEN)

static xdata byte cmdLen;
static xdata byte cmdBuffer[MAX_PLEN];

static xdata byte inBuffer[MAX_PLEN], outBuffer[MAX_PLEN];

static xdata byte pakTimeout = 0;
static xdata byte pakCount = 0;

static mdata bool msgRXD = FALSE;
static mdata bool checkAddr = FALSE;
static xdata byte expectCnt;

static byte pakChecksum(void *cptr, byte len)

{
xdata byte i;

crcClear();

for (i = NIL; i < len; i++)
crcCalculate(((byte *)cptr)[i]);

return crcResult();

}

public bool paklsVariable(void) { return TRUE; }
public void pakSetVariable(void) { pakClear(ON); }

public void pakClear(bool state)

{

pakCount = 0;
pakTimeout = 0;
msgRXD = FALSE;
checkAddr = FALSE;
}

I* used this order to maximise compiler register optimisation */
static void pakLoadHdr(byte dest, byte dev, byte prm, byte sec)

{

outBuffer[PDST] = dest;

outBuffer[PCMD] = prm;

outBuffer[PSCMD] = sec;

outBuffer[PDVC] = ({dev & 0x0f) << 4) | unitDevice();
outBuffer[PSRC] = unitAddress();

}

static void pakDumpSer(byte len)
7

{
xdata byte i;

serPutAddr{outBuffer[PDST]);

for (i = 1; i <= len; i++)
serPutData(outBufferl[i]);

}

public void pakShort(byte dest, byte dev, byte prm, byte sec)

{

pakLoadHdr(dest,dev,prm,sec);

outBuffer[PDL] = 0;

outBuffer[VHDR_LEN] = pakChecksum(outBuffer,VHDR_LEN);
pakDumpSer(VHDR_LEN);

}

public void pakSingle(byte dest, byte dev, byte prm, byte sec, byte data0)

{
xdata byte len;

pakLoadHdr(dest,dev,prm,sec);
outBuffer[VHDR_LEN] = data0;

len = VHDR_LEN+{outBuffer[PDL] = 1);
outBuffer[len] = pakChecksum{outBuffer,len);
pakDumpSer(len);

}

public void pakPair(byte dest, byte dev, byte prm, byte sec, byte data0, byte data1)

{
xdata byte len;

pakLoadHdr(dest,dev,prm,sec);
outBuffer[VHDR_LEN] = data0;
outBuffer[VHDR_LEN+1] = data1;

len = VHDR_LEN+(outBuffer[PDL] = 2);
outBuffer[len] = pakChecksum(outBuffer,len);
pakDumpSer(len);

}

public void pakArray(byte dest, byte dev, byte prm, byte sec, byte *dptr, byte len)

{
I* load header data to packet header */
pakLoadHdr(dest,dev,prm,sec);

I* @len = data length to be copied */

if ((outBuffer[PDL] = len = min{len,MAX_DLEN}))
memcpy(&outBuffer[VHDR_LEN].dptr.len);

I* now @len = full buffer length (exc. CHK)*/

len += VHDR_LEN;

I* @outBuffer[PCHK] = checksum */
outBuffer[len] = pakChecksum(outBuffer,len});
* dump to serial buffers */

pakDumpSer(len);

}

public void pakService(byte ticks)

gf (pakCount && (pakTimeout += ticks) > PAK_TMOUT) pakCount = NIL;
while {serAvailData())

xdata byte tempData;

pakTimeout = NIL;

if ((tempData = serGetData()) == MSG_HEADER)

{

if (checkAddr) inBuffer[pakCount] = MSG_HEADER;
else { checkAddr = TRUE; continue; }

}

else

{
if (checkAddr) inBuffer[{pakCount = PDST}] = tempData;
I* else can't be data if waiting for header byte so throw away */
else if (pakCount == PDST) continue;
else inBuffer[pakCount] = tempData;

}
checkAddr = FALSE;

if(++pakCount < VHDR_LEN) continue;
else if (pakCount == VHDR_LEN)
expectCnt = VHDR_LEN+min(inBuffer[PDL], MAX_DLEN)+1;
else if (pakCount >= expectCnt)

{
if (pakValid())

memmove(cmdBuffer,inBuffer,min(pakCount,MAX_PLEN});
msgRXD = TRUE;
cmdLen = cmdBuffer[PDL];

}
pakCount = NIL;
break;

}

I* Place BEFORE pakService in code */
static bool pakValid(void)

{
if (lunitisAddress(inBuffer[PDST])) return FALSE;
else if (unitisDevice(inBuffer[PDVC] >> 4)) return FALSE;
else if (pakChecksum(inBuffer,pakCount) = 0) return FALSE;
return TRUE;

}
public bool pakReceived({void) { return msgRXD; }
public void pakLoadCmd(void) { msgRXD = FALSE; }

I* destination address */
public byte cmdDestAddress(void) { return cmdBuffer[PDST]; }

I* destination device type */
public byte cmdDestDevice(void) { return (cmdBuffer[PDVC] >> 4) & 0x0f; }

I* sot ess */

public byte cmdSrcAddress(void) { return cmdBuffer[PSRC]; }

I* source device type */
public byte crndSrcDevice(void) { return cndBuffer[PDVC] & 0x0f; }

I* primary command */
public byte emdPrimary(void) { return cmdBuffer[PCMD}; }

I* secondary command */
public byte cndSecondary(void) { return cmdBuffer[PSCMD]; }

I* number of extended data bytes */
public byte crndLength(void) { return cmdLen; }

I* individual data bytes */
public byte cmdData(byte pos) { return cmdBuffer[VHDR_LEN+pos]; }

I* individual data bytes */
public byte *cmdDataStr(void) { return &cmdBuffer[VHDR_LEN]; }

I* packet checksum */
public byte emdChecksum({void) { return cmdBuffer[VHDR_LEN+cmdLen); }

#undef __PAK_C__

e

Appendix F : Checksum generation

Cyclic redundancy check (CRC) error-checking methods are based on the behaviour of
polynomials under two's complement arithmetic. There is extensive literature available on the
theory and practice of CRCs. It is unnecessary to use 16-bit CRCs with an 8-bit micro, and we
use an 8-bit code (0CCH) as recommended by Dallas and used in one of their chips.

CRCs are far more efficient than XOR schemes in detecting errors, although they take longer to
generate. The XOR method is susceptible to failure under any number of error conditions. A
2-bit error burst is a typical example - the XOR will fail to detect any even-numbered inversion
string of consecutive individual bits, say bit position 5. And that’s not all it loses. This is
basically because the XOR loses information in its operation - it cannot encode the two-
dimensional data stream into a similar two-dimensionally coded check byte. Instead it can only
form 8 one-dimensional checks. (The data stream is 2-D in the sense that it can be seen as an
Nx8 array of bits. The CRC is 2-D in the sense that the order of bits in the checksum reflects, in
part, the order of the bits in the data stream.) CRCs are guaranteed to detect a whole range of

possible errors, with the actual efficiency of detection dependent on the length of the polynomial
used and the nature of the polynomial's behaviour in arithmetic space. Note that they are not used
in any way for error-correction (as in Reed-Solomon codes etc.).

#define byte unsigned char
#define POLY 0xCC /* CRC calculation polynomial *f

static byte crcScratch; /* scratchpad register variable */

I* clear scratchpad before starting calcs */
* public */ void crcClear(void) { crcScratch = 0x00; }

I* run calcs on consecutive data bytes */
I* public */ void crcCalculate(byte calc)

{
byte loop, work, flag;
for (loop = 0, work = calc; loop < 8; loop++)

calc = work; /* hold most recent bit-shifted value in ‘caic’ */
work A= crcScratch; /* XOR against current scratch-pad value */
flag = work & 0x01; /* check on XORed LSB state */
I* get ‘scratch’ or ‘scratch XOR POLY’ depending on LSB state */
work = (flag ? crcScratch A POLY : creScratch) >> 1;
crcScratch = work |= flag ? 0x80 : 0x00; /* rotate right with carry */
work = calc >> 1; I* start looking at next bit of data byte */
}

}

¥ return result of calcs */
I* public */ byte crcResult(void) { return crcScratch; }

|

The assembly code used in this module was copied from a Dallas application note, converted to 8051
assembly langunage, tightened up quite a bit, and made slightly more readable.

; This module coded for the REGISTER PARAMETER model
; Data is transferred in R7 - both incoming & outgoing
PUBLIC crcClear, crcCalculate, crcResult

?DT?crcDataSeg?CRC SEGMENT DATA
?PR?crcClear?CRC SEGMENT CODE
?PR?crcCalculate?CRC SEGMENT CODE
?PR?crcResult?CRC SEGMENT CODE
POLY EQU 0CCH

RSEG ?DT?crcDataSeg?CRC

crcScratch :

DS 1

RSEG ?PR?crcClear?CRC

crcClear:
mov

cre H CRC scratchpad register

Both preceding pieces of code have been assembled/compiled and tested with real data. As a fest example,
the sequence crcClear(), crcCalculate(0x5E), crcCalculate(0x3F), ...

0xAC.

ret

RSEG ?PR?crcCalculate?CRC

crcCalculate:
mov
mov

calcNextBit:
mov
xrl
rrc
mov
jnc
xrl

calcNoXOR:
rrc
mov
mov
(4
djnz
ret

RO, #08H
AR7

R7.A
A,crcScratch
A
A,crcScratch
calcNoXOR
A#POLY

A
crcScratch,A
A,R7

A
RO,calcNextBit

RSEG ?PR?crcResuit?CRC

crcResult:
mov
ret

R7.crcScratch

i.e. CLR, 0x5E, 0x3F, 0x01 = 0xAC

; scratch-pad data area

; crcClear() code segment

; creCalculate() code segment
; crcResult() code segment

; value of generator polynomial

; assign single byte scratch-pad

; return to caller

; entered with data byte in R7
; set loop for 8 bits

; load data byte into ACC

; generate CRC for lowest bit
; save bits to be shifted

; xor data byte with CRC

; move to carry bit

; get last CRC value

; skip if xor ==

; update CRC value

; prepare next bit from data byte
; setup new CRC

; store new CRC

; get remaining bits

; position next bit in LSB

; test if another bit

; return to caller

; place scratch value into return register
; return value to caller in R7

should return crcResult() equal to

